LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 struct kmp_sys_timer {
70  struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec) \
75  (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101  cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111  "Illegal set affinity operation when not capable");
112 
113  kmp_affin_mask_t *mask;
114  KMP_CPU_ALLOC_ON_STACK(mask);
115  KMP_CPU_ZERO(mask);
116  KMP_CPU_SET(which, mask);
117  __kmp_set_system_affinity(mask, TRUE);
118  KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125  // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130 #elif KMP_OS_FREEBSD
131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132 #endif
133 
134 #if KMP_OS_LINUX
135  long gCode;
136  unsigned char *buf;
137  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
138 
139  // If the syscall returns a suggestion for the size,
140  // then we don't have to search for an appropriate size.
141  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
142  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143  "initial getaffinity call returned %ld errno = %d\n",
144  gCode, errno));
145 
146  if (gCode < 0 && errno != EINVAL) {
147  // System call not supported
148  if (__kmp_affinity_verbose ||
149  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150  (__kmp_affinity_type != affinity_default) &&
151  (__kmp_affinity_type != affinity_disabled))) {
152  int error = errno;
153  kmp_msg_t err_code = KMP_ERR(error);
154  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155  err_code, __kmp_msg_null);
156  if (__kmp_generate_warnings == kmp_warnings_off) {
157  __kmp_str_free(&err_code.str);
158  }
159  }
160  KMP_AFFINITY_DISABLE();
161  KMP_INTERNAL_FREE(buf);
162  return;
163  } else if (gCode > 0) {
164  // The optimal situation: the OS returns the size of the buffer it expects.
165  KMP_AFFINITY_ENABLE(gCode);
166  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
167  "affinity supported (mask size %d)\n",
168  (int)__kmp_affin_mask_size));
169  KMP_INTERNAL_FREE(buf);
170  return;
171  }
172 
173  // Call the getaffinity system call repeatedly with increasing set sizes
174  // until we succeed, or reach an upper bound on the search.
175  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
176  "searching for proper set size\n"));
177  int size;
178  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
179  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
180  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
181  "getaffinity for mask size %ld returned %ld errno = %d\n",
182  size, gCode, errno));
183 
184  if (gCode < 0) {
185  if (errno == ENOSYS) {
186  // We shouldn't get here
187  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
188  "inconsistent OS call behavior: errno == ENOSYS for mask "
189  "size %d\n",
190  size));
191  if (__kmp_affinity_verbose ||
192  (__kmp_affinity_warnings &&
193  (__kmp_affinity_type != affinity_none) &&
194  (__kmp_affinity_type != affinity_default) &&
195  (__kmp_affinity_type != affinity_disabled))) {
196  int error = errno;
197  kmp_msg_t err_code = KMP_ERR(error);
198  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
199  err_code, __kmp_msg_null);
200  if (__kmp_generate_warnings == kmp_warnings_off) {
201  __kmp_str_free(&err_code.str);
202  }
203  }
204  KMP_AFFINITY_DISABLE();
205  KMP_INTERNAL_FREE(buf);
206  return;
207  }
208  continue;
209  }
210 
211  KMP_AFFINITY_ENABLE(gCode);
212  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
213  "affinity supported (mask size %d)\n",
214  (int)__kmp_affin_mask_size));
215  KMP_INTERNAL_FREE(buf);
216  return;
217  }
218 #elif KMP_OS_FREEBSD
219  long gCode;
220  unsigned char *buf;
221  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
222  gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
223  reinterpret_cast<cpuset_t *>(buf));
224  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
225  "initial getaffinity call returned %d errno = %d\n",
226  gCode, errno));
227  if (gCode == 0) {
228  KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
229  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
230  "affinity supported (mask size %d)\n",
231  (int)__kmp_affin_mask_size));
232  KMP_INTERNAL_FREE(buf);
233  return;
234  }
235 #endif
236  KMP_INTERNAL_FREE(buf);
237 
238  // Affinity is not supported
239  KMP_AFFINITY_DISABLE();
240  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
241  "cannot determine mask size - affinity not supported\n"));
242  if (__kmp_affinity_verbose ||
243  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
244  (__kmp_affinity_type != affinity_default) &&
245  (__kmp_affinity_type != affinity_disabled))) {
246  KMP_WARNING(AffCantGetMaskSize, env_var);
247  }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
254 int __kmp_futex_determine_capable() {
255  int loc = 0;
256  long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257  int retval = (rc == 0) || (errno != ENOSYS);
258 
259  KA_TRACE(10,
260  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262  retval ? "" : " not"));
263 
264  return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271  use compare_and_store for these routines */
272 
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274  kmp_int8 old_value, new_value;
275 
276  old_value = TCR_1(*p);
277  new_value = old_value | d;
278 
279  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280  KMP_CPU_PAUSE();
281  old_value = TCR_1(*p);
282  new_value = old_value | d;
283  }
284  return old_value;
285 }
286 
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288  kmp_int8 old_value, new_value;
289 
290  old_value = TCR_1(*p);
291  new_value = old_value & d;
292 
293  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294  KMP_CPU_PAUSE();
295  old_value = TCR_1(*p);
296  new_value = old_value & d;
297  }
298  return old_value;
299 }
300 
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302  kmp_uint32 old_value, new_value;
303 
304  old_value = TCR_4(*p);
305  new_value = old_value | d;
306 
307  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308  KMP_CPU_PAUSE();
309  old_value = TCR_4(*p);
310  new_value = old_value | d;
311  }
312  return old_value;
313 }
314 
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316  kmp_uint32 old_value, new_value;
317 
318  old_value = TCR_4(*p);
319  new_value = old_value & d;
320 
321  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322  KMP_CPU_PAUSE();
323  old_value = TCR_4(*p);
324  new_value = old_value & d;
325  }
326  return old_value;
327 }
328 
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331  kmp_int8 old_value, new_value;
332 
333  old_value = TCR_1(*p);
334  new_value = old_value + d;
335 
336  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337  KMP_CPU_PAUSE();
338  old_value = TCR_1(*p);
339  new_value = old_value + d;
340  }
341  return old_value;
342 }
343 
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345  kmp_int64 old_value, new_value;
346 
347  old_value = TCR_8(*p);
348  new_value = old_value + d;
349 
350  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351  KMP_CPU_PAUSE();
352  old_value = TCR_8(*p);
353  new_value = old_value + d;
354  }
355  return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360  kmp_uint64 old_value, new_value;
361 
362  old_value = TCR_8(*p);
363  new_value = old_value | d;
364  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365  KMP_CPU_PAUSE();
366  old_value = TCR_8(*p);
367  new_value = old_value | d;
368  }
369  return old_value;
370 }
371 
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373  kmp_uint64 old_value, new_value;
374 
375  old_value = TCR_8(*p);
376  new_value = old_value & d;
377  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378  KMP_CPU_PAUSE();
379  old_value = TCR_8(*p);
380  new_value = old_value & d;
381  }
382  return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
387 void __kmp_terminate_thread(int gtid) {
388  int status;
389  kmp_info_t *th = __kmp_threads[gtid];
390 
391  if (!th)
392  return;
393 
394 #ifdef KMP_CANCEL_THREADS
395  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396  status = pthread_cancel(th->th.th_info.ds.ds_thread);
397  if (status != 0 && status != ESRCH) {
398  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399  __kmp_msg_null);
400  }
401 #endif
402  KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406  If values are unreasonable, assume call failed and use incremental stack
407  refinement method instead. Returns TRUE if the stack parameters could be
408  determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410  int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
412  KMP_OS_HURD
413  pthread_attr_t attr;
414  int status;
415  size_t size = 0;
416  void *addr = 0;
417 
418  /* Always do incremental stack refinement for ubermaster threads since the
419  initial thread stack range can be reduced by sibling thread creation so
420  pthread_attr_getstack may cause thread gtid aliasing */
421  if (!KMP_UBER_GTID(gtid)) {
422 
423  /* Fetch the real thread attributes */
424  status = pthread_attr_init(&attr);
425  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427  status = pthread_attr_get_np(pthread_self(), &attr);
428  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430  status = pthread_getattr_np(pthread_self(), &attr);
431  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433  status = pthread_attr_getstack(&attr, &addr, &size);
434  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435  KA_TRACE(60,
436  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437  " %lu, low addr: %p\n",
438  gtid, size, addr));
439  status = pthread_attr_destroy(&attr);
440  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441  }
442 
443  if (size != 0 && addr != 0) { // was stack parameter determination successful?
444  /* Store the correct base and size */
445  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448  return TRUE;
449  }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
451  || KMP_OS_HURD */
452  /* Use incremental refinement starting from initial conservative estimate */
453  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456  return FALSE;
457 }
458 
459 static void *__kmp_launch_worker(void *thr) {
460  int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462  sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464  void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
466  KMP_OS_OPENBSD || KMP_OS_HURD
467  void *volatile padding = 0;
468 #endif
469  int gtid;
470 
471  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472  __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474  __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477  // set thread local index to point to thread-specific stats
478  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479  __kmp_stats_thread_ptr->startLife();
480  KMP_SET_THREAD_STATE(IDLE);
481  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485  __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489  __kmp_affinity_set_init_mask(gtid, FALSE);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501  // Set FP control regs to be a copy of the parallel initialization thread's.
502  __kmp_clear_x87_fpu_status_word();
503  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504  __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508  status = sigfillset(&new_set);
509  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
515  KMP_OS_OPENBSD
516  if (__kmp_stkoffset > 0 && gtid > 0) {
517  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518  (void)padding;
519  }
520 #endif
521 
522  KMP_MB();
523  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
524 
525  __kmp_check_stack_overlap((kmp_info_t *)thr);
526 
527  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
528 
529 #ifdef KMP_BLOCK_SIGNALS
530  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
533 
534  return exit_val;
535 }
536 
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
539 
540 static void *__kmp_launch_monitor(void *thr) {
541  int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543  sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545  struct timespec interval;
546 
547  KMP_MB(); /* Flush all pending memory write invalidates. */
548 
549  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
550 
551  /* register us as the monitor thread */
552  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554  __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
556 
557  KMP_MB();
558 
559 #if USE_ITT_BUILD
560  // Instruct Intel(R) Threading Tools to ignore monitor thread.
561  __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
563 
564  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565  (kmp_info_t *)thr);
566 
567  __kmp_check_stack_overlap((kmp_info_t *)thr);
568 
569 #ifdef KMP_CANCEL_THREADS
570  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
576 
577 #if KMP_REAL_TIME_FIX
578  // This is a potential fix which allows application with real-time scheduling
579  // policy work. However, decision about the fix is not made yet, so it is
580  // disabled by default.
581  { // Are program started with real-time scheduling policy?
582  int sched = sched_getscheduler(0);
583  if (sched == SCHED_FIFO || sched == SCHED_RR) {
584  // Yes, we are a part of real-time application. Try to increase the
585  // priority of the monitor.
586  struct sched_param param;
587  int max_priority = sched_get_priority_max(sched);
588  int rc;
589  KMP_WARNING(RealTimeSchedNotSupported);
590  sched_getparam(0, &param);
591  if (param.sched_priority < max_priority) {
592  param.sched_priority += 1;
593  rc = sched_setscheduler(0, sched, &param);
594  if (rc != 0) {
595  int error = errno;
596  kmp_msg_t err_code = KMP_ERR(error);
597  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599  if (__kmp_generate_warnings == kmp_warnings_off) {
600  __kmp_str_free(&err_code.str);
601  }
602  }
603  } else {
604  // We cannot abort here, because number of CPUs may be enough for all
605  // the threads, including the monitor thread, so application could
606  // potentially work...
607  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609  __kmp_msg_null);
610  }
611  }
612  // AC: free thread that waits for monitor started
613  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
614  }
615 #endif // KMP_REAL_TIME_FIX
616 
617  KMP_MB(); /* Flush all pending memory write invalidates. */
618 
619  if (__kmp_monitor_wakeups == 1) {
620  interval.tv_sec = 1;
621  interval.tv_nsec = 0;
622  } else {
623  interval.tv_sec = 0;
624  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
625  }
626 
627  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
628 
629  while (!TCR_4(__kmp_global.g.g_done)) {
630  struct timespec now;
631  struct timeval tval;
632 
633  /* This thread monitors the state of the system */
634 
635  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
636 
637  status = gettimeofday(&tval, NULL);
638  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639  TIMEVAL_TO_TIMESPEC(&tval, &now);
640 
641  now.tv_sec += interval.tv_sec;
642  now.tv_nsec += interval.tv_nsec;
643 
644  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645  now.tv_sec += 1;
646  now.tv_nsec -= KMP_NSEC_PER_SEC;
647  }
648 
649  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651  // AC: the monitor should not fall asleep if g_done has been set
652  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654  &__kmp_wait_mx.m_mutex, &now);
655  if (status != 0) {
656  if (status != ETIMEDOUT && status != EINTR) {
657  KMP_SYSFAIL("pthread_cond_timedwait", status);
658  }
659  }
660  }
661  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
663 
664  TCW_4(__kmp_global.g.g_time.dt.t_value,
665  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
666 
667  KMP_MB(); /* Flush all pending memory write invalidates. */
668  }
669 
670  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
671 
672 #ifdef KMP_BLOCK_SIGNALS
673  status = sigfillset(&new_set);
674  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
678 
679  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
680 
681  if (__kmp_global.g.g_abort != 0) {
682  /* now we need to terminate the worker threads */
683  /* the value of t_abort is the signal we caught */
684 
685  int gtid;
686 
687  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688  __kmp_global.g.g_abort));
689 
690  /* terminate the OpenMP worker threads */
691  /* TODO this is not valid for sibling threads!!
692  * the uber master might not be 0 anymore.. */
693  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694  __kmp_terminate_thread(gtid);
695 
696  __kmp_cleanup();
697 
698  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699  __kmp_global.g.g_abort));
700 
701  if (__kmp_global.g.g_abort > 0)
702  raise(__kmp_global.g.g_abort);
703  }
704 
705  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
706 
707  return thr;
708 }
709 #endif // KMP_USE_MONITOR
710 
711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712  pthread_t handle;
713  pthread_attr_t thread_attr;
714  int status;
715 
716  th->th.th_info.ds.ds_gtid = gtid;
717 
718 #if KMP_STATS_ENABLED
719  // sets up worker thread stats
720  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
721 
722  // th->th.th_stats is used to transfer thread-specific stats-pointer to
723  // __kmp_launch_worker. So when thread is created (goes into
724  // __kmp_launch_worker) it will set its thread local pointer to
725  // th->th.th_stats
726  if (!KMP_UBER_GTID(gtid)) {
727  th->th.th_stats = __kmp_stats_list->push_back(gtid);
728  } else {
729  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730  // so set the th->th.th_stats field to it.
731  th->th.th_stats = __kmp_stats_thread_ptr;
732  }
733  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
734 
735 #endif // KMP_STATS_ENABLED
736 
737  if (KMP_UBER_GTID(gtid)) {
738  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739  th->th.th_info.ds.ds_thread = pthread_self();
740  __kmp_set_stack_info(gtid, th);
741  __kmp_check_stack_overlap(th);
742  return;
743  }
744 
745  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
746 
747  KMP_MB(); /* Flush all pending memory write invalidates. */
748 
749 #ifdef KMP_THREAD_ATTR
750  status = pthread_attr_init(&thread_attr);
751  if (status != 0) {
752  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
753  }
754  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755  if (status != 0) {
756  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
757  }
758 
759  /* Set stack size for this thread now.
760  The multiple of 2 is there because on some machines, requesting an unusual
761  stacksize causes the thread to have an offset before the dummy alloca()
762  takes place to create the offset. Since we want the user to have a
763  sufficient stacksize AND support a stack offset, we alloca() twice the
764  offset so that the upcoming alloca() does not eliminate any premade offset,
765  and also gives the user the stack space they requested for all threads */
766  stack_size += gtid * __kmp_stkoffset * 2;
767 
768 #if defined(__ANDROID__) && __ANDROID_API__ < 19
769  // Round the stack size to a multiple of the page size. Older versions of
770  // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
771  // if the stack size was not a multiple of the page size.
772  stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
773 #endif
774 
775  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
776  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
777  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
778 
779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
780  status = pthread_attr_setstacksize(&thread_attr, stack_size);
781 #ifdef KMP_BACKUP_STKSIZE
782  if (status != 0) {
783  if (!__kmp_env_stksize) {
784  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
785  __kmp_stksize = KMP_BACKUP_STKSIZE;
786  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
787  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
788  "bytes\n",
789  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
790  status = pthread_attr_setstacksize(&thread_attr, stack_size);
791  }
792  }
793 #endif /* KMP_BACKUP_STKSIZE */
794  if (status != 0) {
795  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
796  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
797  }
798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
799 
800 #endif /* KMP_THREAD_ATTR */
801 
802  status =
803  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
804  if (status != 0 || !handle) { // ??? Why do we check handle??
805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
806  if (status == EINVAL) {
807  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
808  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
809  }
810  if (status == ENOMEM) {
811  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
812  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
813  }
814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
815  if (status == EAGAIN) {
816  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
817  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
818  }
819  KMP_SYSFAIL("pthread_create", status);
820  }
821 
822  th->th.th_info.ds.ds_thread = handle;
823 
824 #ifdef KMP_THREAD_ATTR
825  status = pthread_attr_destroy(&thread_attr);
826  if (status) {
827  kmp_msg_t err_code = KMP_ERR(status);
828  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
829  __kmp_msg_null);
830  if (__kmp_generate_warnings == kmp_warnings_off) {
831  __kmp_str_free(&err_code.str);
832  }
833  }
834 #endif /* KMP_THREAD_ATTR */
835 
836  KMP_MB(); /* Flush all pending memory write invalidates. */
837 
838  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
839 
840 } // __kmp_create_worker
841 
842 #if KMP_USE_MONITOR
843 void __kmp_create_monitor(kmp_info_t *th) {
844  pthread_t handle;
845  pthread_attr_t thread_attr;
846  size_t size;
847  int status;
848  int auto_adj_size = FALSE;
849 
850  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
851  // We don't need monitor thread in case of MAX_BLOCKTIME
852  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
853  "MAX blocktime\n"));
854  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
855  th->th.th_info.ds.ds_gtid = 0;
856  return;
857  }
858  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
859 
860  KMP_MB(); /* Flush all pending memory write invalidates. */
861 
862  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
863  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
864 #if KMP_REAL_TIME_FIX
865  TCW_4(__kmp_global.g.g_time.dt.t_value,
866  -1); // Will use it for synchronization a bit later.
867 #else
868  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
869 #endif // KMP_REAL_TIME_FIX
870 
871 #ifdef KMP_THREAD_ATTR
872  if (__kmp_monitor_stksize == 0) {
873  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
874  auto_adj_size = TRUE;
875  }
876  status = pthread_attr_init(&thread_attr);
877  if (status != 0) {
878  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
879  }
880  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
881  if (status != 0) {
882  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
883  }
884 
885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
886  status = pthread_attr_getstacksize(&thread_attr, &size);
887  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
888 #else
889  size = __kmp_sys_min_stksize;
890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
891 #endif /* KMP_THREAD_ATTR */
892 
893  if (__kmp_monitor_stksize == 0) {
894  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
895  }
896  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
897  __kmp_monitor_stksize = __kmp_sys_min_stksize;
898  }
899 
900  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
901  "requested stacksize = %lu bytes\n",
902  size, __kmp_monitor_stksize));
903 
904 retry:
905 
906 /* Set stack size for this thread now. */
907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
908  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
909  __kmp_monitor_stksize));
910  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
911  if (status != 0) {
912  if (auto_adj_size) {
913  __kmp_monitor_stksize *= 2;
914  goto retry;
915  }
916  kmp_msg_t err_code = KMP_ERR(status);
917  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
918  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
919  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
920  if (__kmp_generate_warnings == kmp_warnings_off) {
921  __kmp_str_free(&err_code.str);
922  }
923  }
924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
925 
926  status =
927  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
928 
929  if (status != 0) {
930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
931  if (status == EINVAL) {
932  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
933  __kmp_monitor_stksize *= 2;
934  goto retry;
935  }
936  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
937  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
938  __kmp_msg_null);
939  }
940  if (status == ENOMEM) {
941  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
942  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
943  __kmp_msg_null);
944  }
945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
946  if (status == EAGAIN) {
947  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
948  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
949  }
950  KMP_SYSFAIL("pthread_create", status);
951  }
952 
953  th->th.th_info.ds.ds_thread = handle;
954 
955 #if KMP_REAL_TIME_FIX
956  // Wait for the monitor thread is really started and set its *priority*.
957  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
958  sizeof(__kmp_global.g.g_time.dt.t_value));
959  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
960  &__kmp_neq_4, NULL);
961 #endif // KMP_REAL_TIME_FIX
962 
963 #ifdef KMP_THREAD_ATTR
964  status = pthread_attr_destroy(&thread_attr);
965  if (status != 0) {
966  kmp_msg_t err_code = KMP_ERR(status);
967  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
968  __kmp_msg_null);
969  if (__kmp_generate_warnings == kmp_warnings_off) {
970  __kmp_str_free(&err_code.str);
971  }
972  }
973 #endif
974 
975  KMP_MB(); /* Flush all pending memory write invalidates. */
976 
977  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
978  th->th.th_info.ds.ds_thread));
979 
980 } // __kmp_create_monitor
981 #endif // KMP_USE_MONITOR
982 
983 void __kmp_exit_thread(int exit_status) {
984  pthread_exit((void *)(intptr_t)exit_status);
985 } // __kmp_exit_thread
986 
987 #if KMP_USE_MONITOR
988 void __kmp_resume_monitor();
989 
990 void __kmp_reap_monitor(kmp_info_t *th) {
991  int status;
992  void *exit_val;
993 
994  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
995  " %#.8lx\n",
996  th->th.th_info.ds.ds_thread));
997 
998  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
999  // If both tid and gtid are 0, it means the monitor did not ever start.
1000  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1001  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1002  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1003  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1004  return;
1005  }
1006 
1007  KMP_MB(); /* Flush all pending memory write invalidates. */
1008 
1009  /* First, check to see whether the monitor thread exists to wake it up. This
1010  is to avoid performance problem when the monitor sleeps during
1011  blocktime-size interval */
1012 
1013  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1014  if (status != ESRCH) {
1015  __kmp_resume_monitor(); // Wake up the monitor thread
1016  }
1017  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1018  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1019  if (exit_val != th) {
1020  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1021  }
1022 
1023  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1024  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1025 
1026  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1027  " %#.8lx\n",
1028  th->th.th_info.ds.ds_thread));
1029 
1030  KMP_MB(); /* Flush all pending memory write invalidates. */
1031 }
1032 #endif // KMP_USE_MONITOR
1033 
1034 void __kmp_reap_worker(kmp_info_t *th) {
1035  int status;
1036  void *exit_val;
1037 
1038  KMP_MB(); /* Flush all pending memory write invalidates. */
1039 
1040  KA_TRACE(
1041  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1042 
1043  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1044 #ifdef KMP_DEBUG
1045  /* Don't expose these to the user until we understand when they trigger */
1046  if (status != 0) {
1047  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1048  }
1049  if (exit_val != th) {
1050  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1051  "exit_val = %p\n",
1052  th->th.th_info.ds.ds_gtid, exit_val));
1053  }
1054 #endif /* KMP_DEBUG */
1055 
1056  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1057  th->th.th_info.ds.ds_gtid));
1058 
1059  KMP_MB(); /* Flush all pending memory write invalidates. */
1060 }
1061 
1062 #if KMP_HANDLE_SIGNALS
1063 
1064 static void __kmp_null_handler(int signo) {
1065  // Do nothing, for doing SIG_IGN-type actions.
1066 } // __kmp_null_handler
1067 
1068 static void __kmp_team_handler(int signo) {
1069  if (__kmp_global.g.g_abort == 0) {
1070 /* Stage 1 signal handler, let's shut down all of the threads */
1071 #ifdef KMP_DEBUG
1072  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1073 #endif
1074  switch (signo) {
1075  case SIGHUP:
1076  case SIGINT:
1077  case SIGQUIT:
1078  case SIGILL:
1079  case SIGABRT:
1080  case SIGFPE:
1081  case SIGBUS:
1082  case SIGSEGV:
1083 #ifdef SIGSYS
1084  case SIGSYS:
1085 #endif
1086  case SIGTERM:
1087  if (__kmp_debug_buf) {
1088  __kmp_dump_debug_buffer();
1089  }
1090  __kmp_unregister_library(); // cleanup shared memory
1091  KMP_MB(); // Flush all pending memory write invalidates.
1092  TCW_4(__kmp_global.g.g_abort, signo);
1093  KMP_MB(); // Flush all pending memory write invalidates.
1094  TCW_4(__kmp_global.g.g_done, TRUE);
1095  KMP_MB(); // Flush all pending memory write invalidates.
1096  break;
1097  default:
1098 #ifdef KMP_DEBUG
1099  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1100 #endif
1101  break;
1102  }
1103  }
1104 } // __kmp_team_handler
1105 
1106 static void __kmp_sigaction(int signum, const struct sigaction *act,
1107  struct sigaction *oldact) {
1108  int rc = sigaction(signum, act, oldact);
1109  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1110 }
1111 
1112 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1113  int parallel_init) {
1114  KMP_MB(); // Flush all pending memory write invalidates.
1115  KB_TRACE(60,
1116  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1117  if (parallel_init) {
1118  struct sigaction new_action;
1119  struct sigaction old_action;
1120  new_action.sa_handler = handler_func;
1121  new_action.sa_flags = 0;
1122  sigfillset(&new_action.sa_mask);
1123  __kmp_sigaction(sig, &new_action, &old_action);
1124  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1125  sigaddset(&__kmp_sigset, sig);
1126  } else {
1127  // Restore/keep user's handler if one previously installed.
1128  __kmp_sigaction(sig, &old_action, NULL);
1129  }
1130  } else {
1131  // Save initial/system signal handlers to see if user handlers installed.
1132  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1133  }
1134  KMP_MB(); // Flush all pending memory write invalidates.
1135 } // __kmp_install_one_handler
1136 
1137 static void __kmp_remove_one_handler(int sig) {
1138  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1139  if (sigismember(&__kmp_sigset, sig)) {
1140  struct sigaction old;
1141  KMP_MB(); // Flush all pending memory write invalidates.
1142  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1143  if ((old.sa_handler != __kmp_team_handler) &&
1144  (old.sa_handler != __kmp_null_handler)) {
1145  // Restore the users signal handler.
1146  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1147  "restoring: sig=%d\n",
1148  sig));
1149  __kmp_sigaction(sig, &old, NULL);
1150  }
1151  sigdelset(&__kmp_sigset, sig);
1152  KMP_MB(); // Flush all pending memory write invalidates.
1153  }
1154 } // __kmp_remove_one_handler
1155 
1156 void __kmp_install_signals(int parallel_init) {
1157  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1158  if (__kmp_handle_signals || !parallel_init) {
1159  // If ! parallel_init, we do not install handlers, just save original
1160  // handlers. Let us do it even __handle_signals is 0.
1161  sigemptyset(&__kmp_sigset);
1162  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1163  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1164  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1165  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1166  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1167  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1168  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1169  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1170 #ifdef SIGSYS
1171  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1172 #endif // SIGSYS
1173  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1174 #ifdef SIGPIPE
1175  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1176 #endif // SIGPIPE
1177  }
1178 } // __kmp_install_signals
1179 
1180 void __kmp_remove_signals(void) {
1181  int sig;
1182  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1183  for (sig = 1; sig < NSIG; ++sig) {
1184  __kmp_remove_one_handler(sig);
1185  }
1186 } // __kmp_remove_signals
1187 
1188 #endif // KMP_HANDLE_SIGNALS
1189 
1190 void __kmp_enable(int new_state) {
1191 #ifdef KMP_CANCEL_THREADS
1192  int status, old_state;
1193  status = pthread_setcancelstate(new_state, &old_state);
1194  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1195  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1196 #endif
1197 }
1198 
1199 void __kmp_disable(int *old_state) {
1200 #ifdef KMP_CANCEL_THREADS
1201  int status;
1202  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1203  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1204 #endif
1205 }
1206 
1207 static void __kmp_atfork_prepare(void) {
1208  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1209  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1210 }
1211 
1212 static void __kmp_atfork_parent(void) {
1213  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1214  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1215 }
1216 
1217 /* Reset the library so execution in the child starts "all over again" with
1218  clean data structures in initial states. Don't worry about freeing memory
1219  allocated by parent, just abandon it to be safe. */
1220 static void __kmp_atfork_child(void) {
1221  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1222  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1223  /* TODO make sure this is done right for nested/sibling */
1224  // ATT: Memory leaks are here? TODO: Check it and fix.
1225  /* KMP_ASSERT( 0 ); */
1226 
1227  ++__kmp_fork_count;
1228 
1229 #if KMP_AFFINITY_SUPPORTED
1230 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1231  // reset the affinity in the child to the initial thread
1232  // affinity in the parent
1233  kmp_set_thread_affinity_mask_initial();
1234 #endif
1235  // Set default not to bind threads tightly in the child (we’re expecting
1236  // over-subscription after the fork and this can improve things for
1237  // scripting languages that use OpenMP inside process-parallel code).
1238  __kmp_affinity_type = affinity_none;
1239  if (__kmp_nested_proc_bind.bind_types != NULL) {
1240  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1241  }
1242  __kmp_affinity_masks = NULL;
1243  __kmp_affinity_num_masks = 0;
1244 #endif // KMP_AFFINITY_SUPPORTED
1245 
1246 #if KMP_USE_MONITOR
1247  __kmp_init_monitor = 0;
1248 #endif
1249  __kmp_init_parallel = FALSE;
1250  __kmp_init_middle = FALSE;
1251  __kmp_init_serial = FALSE;
1252  TCW_4(__kmp_init_gtid, FALSE);
1253  __kmp_init_common = FALSE;
1254 
1255  TCW_4(__kmp_init_user_locks, FALSE);
1256 #if !KMP_USE_DYNAMIC_LOCK
1257  __kmp_user_lock_table.used = 1;
1258  __kmp_user_lock_table.allocated = 0;
1259  __kmp_user_lock_table.table = NULL;
1260  __kmp_lock_blocks = NULL;
1261 #endif
1262 
1263  __kmp_all_nth = 0;
1264  TCW_4(__kmp_nth, 0);
1265 
1266  __kmp_thread_pool = NULL;
1267  __kmp_thread_pool_insert_pt = NULL;
1268  __kmp_team_pool = NULL;
1269 
1270  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1271  here so threadprivate doesn't use stale data */
1272  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1273  __kmp_threadpriv_cache_list));
1274 
1275  while (__kmp_threadpriv_cache_list != NULL) {
1276 
1277  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1278  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1279  &(*__kmp_threadpriv_cache_list->addr)));
1280 
1281  *__kmp_threadpriv_cache_list->addr = NULL;
1282  }
1283  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1284  }
1285 
1286  __kmp_init_runtime = FALSE;
1287 
1288  /* reset statically initialized locks */
1289  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1290  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1291  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1292  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1293 
1294 #if USE_ITT_BUILD
1295  __kmp_itt_reset(); // reset ITT's global state
1296 #endif /* USE_ITT_BUILD */
1297 
1298  __kmp_serial_initialize();
1299 
1300  /* This is necessary to make sure no stale data is left around */
1301  /* AC: customers complain that we use unsafe routines in the atfork
1302  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1303  in dynamic_link when check the presence of shared tbbmalloc library.
1304  Suggestion is to make the library initialization lazier, similar
1305  to what done for __kmpc_begin(). */
1306  // TODO: synchronize all static initializations with regular library
1307  // startup; look at kmp_global.cpp and etc.
1308  //__kmp_internal_begin ();
1309 }
1310 
1311 void __kmp_register_atfork(void) {
1312  if (__kmp_need_register_atfork) {
1313  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1314  __kmp_atfork_child);
1315  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1316  __kmp_need_register_atfork = FALSE;
1317  }
1318 }
1319 
1320 void __kmp_suspend_initialize(void) {
1321  int status;
1322  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1323  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1324  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1325  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1326 }
1327 
1328 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1329  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1330  int new_value = __kmp_fork_count + 1;
1331  // Return if already initialized
1332  if (old_value == new_value)
1333  return;
1334  // Wait, then return if being initialized
1335  if (old_value == -1 || !__kmp_atomic_compare_store(
1336  &th->th.th_suspend_init_count, old_value, -1)) {
1337  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1338  KMP_CPU_PAUSE();
1339  }
1340  } else {
1341  // Claim to be the initializer and do initializations
1342  int status;
1343  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1344  &__kmp_suspend_cond_attr);
1345  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1346  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1347  &__kmp_suspend_mutex_attr);
1348  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1349  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1350  }
1351 }
1352 
1353 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1354  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1355  /* this means we have initialize the suspension pthread objects for this
1356  thread in this instance of the process */
1357  int status;
1358 
1359  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1360  if (status != 0 && status != EBUSY) {
1361  KMP_SYSFAIL("pthread_cond_destroy", status);
1362  }
1363  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1364  if (status != 0 && status != EBUSY) {
1365  KMP_SYSFAIL("pthread_mutex_destroy", status);
1366  }
1367  --th->th.th_suspend_init_count;
1368  KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1369  __kmp_fork_count);
1370  }
1371 }
1372 
1373 // return true if lock obtained, false otherwise
1374 int __kmp_try_suspend_mx(kmp_info_t *th) {
1375  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1376 }
1377 
1378 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1379  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1380  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1381 }
1382 
1383 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1384  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1385  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1386 }
1387 
1388 /* This routine puts the calling thread to sleep after setting the
1389  sleep bit for the indicated flag variable to true. */
1390 template <class C>
1391 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1392  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1393  kmp_info_t *th = __kmp_threads[th_gtid];
1394  int status;
1395  typename C::flag_t old_spin;
1396 
1397  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1398  flag->get()));
1399 
1400  __kmp_suspend_initialize_thread(th);
1401 
1402  __kmp_lock_suspend_mx(th);
1403 
1404  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1405  th_gtid, flag->get()));
1406 
1407  /* TODO: shouldn't this use release semantics to ensure that
1408  __kmp_suspend_initialize_thread gets called first? */
1409  old_spin = flag->set_sleeping();
1410  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1411  __kmp_pause_status != kmp_soft_paused) {
1412  flag->unset_sleeping();
1413  __kmp_unlock_suspend_mx(th);
1414  return;
1415  }
1416  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1417  " was %x\n",
1418  th_gtid, flag->get(), flag->load(), old_spin));
1419 
1420  if (flag->done_check_val(old_spin)) {
1421  old_spin = flag->unset_sleeping();
1422  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1423  "for spin(%p)\n",
1424  th_gtid, flag->get()));
1425  } else {
1426  /* Encapsulate in a loop as the documentation states that this may
1427  "with low probability" return when the condition variable has
1428  not been signaled or broadcast */
1429  int deactivated = FALSE;
1430  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1431 
1432  while (flag->is_sleeping()) {
1433 #ifdef DEBUG_SUSPEND
1434  char buffer[128];
1435  __kmp_suspend_count++;
1436  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1437  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1438  buffer);
1439 #endif
1440  // Mark the thread as no longer active (only in the first iteration of the
1441  // loop).
1442  if (!deactivated) {
1443  th->th.th_active = FALSE;
1444  if (th->th.th_active_in_pool) {
1445  th->th.th_active_in_pool = FALSE;
1446  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1447  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1448  }
1449  deactivated = TRUE;
1450  }
1451 
1452 #if USE_SUSPEND_TIMEOUT
1453  struct timespec now;
1454  struct timeval tval;
1455  int msecs;
1456 
1457  status = gettimeofday(&tval, NULL);
1458  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1459  TIMEVAL_TO_TIMESPEC(&tval, &now);
1460 
1461  msecs = (4 * __kmp_dflt_blocktime) + 200;
1462  now.tv_sec += msecs / 1000;
1463  now.tv_nsec += (msecs % 1000) * 1000;
1464 
1465  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1466  "pthread_cond_timedwait\n",
1467  th_gtid));
1468  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1469  &th->th.th_suspend_mx.m_mutex, &now);
1470 #else
1471  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1472  " pthread_cond_wait\n",
1473  th_gtid));
1474  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1475  &th->th.th_suspend_mx.m_mutex);
1476 #endif // USE_SUSPEND_TIMEOUT
1477 
1478  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1479  KMP_SYSFAIL("pthread_cond_wait", status);
1480  }
1481 #ifdef KMP_DEBUG
1482  if (status == ETIMEDOUT) {
1483  if (flag->is_sleeping()) {
1484  KF_TRACE(100,
1485  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1486  } else {
1487  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1488  "not set!\n",
1489  th_gtid));
1490  }
1491  } else if (flag->is_sleeping()) {
1492  KF_TRACE(100,
1493  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1494  }
1495 #endif
1496  } // while
1497 
1498  // Mark the thread as active again (if it was previous marked as inactive)
1499  if (deactivated) {
1500  th->th.th_active = TRUE;
1501  if (TCR_4(th->th.th_in_pool)) {
1502  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1503  th->th.th_active_in_pool = TRUE;
1504  }
1505  }
1506  }
1507 #ifdef DEBUG_SUSPEND
1508  {
1509  char buffer[128];
1510  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1511  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1512  buffer);
1513  }
1514 #endif
1515 
1516  __kmp_unlock_suspend_mx(th);
1517  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1518 }
1519 
1520 template <bool C, bool S>
1521 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1522  __kmp_suspend_template(th_gtid, flag);
1523 }
1524 template <bool C, bool S>
1525 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1526  __kmp_suspend_template(th_gtid, flag);
1527 }
1528 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1529  __kmp_suspend_template(th_gtid, flag);
1530 }
1531 
1532 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1533 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1534 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1535 
1536 /* This routine signals the thread specified by target_gtid to wake up
1537  after setting the sleep bit indicated by the flag argument to FALSE.
1538  The target thread must already have called __kmp_suspend_template() */
1539 template <class C>
1540 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1541  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1542  kmp_info_t *th = __kmp_threads[target_gtid];
1543  int status;
1544 
1545 #ifdef KMP_DEBUG
1546  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1547 #endif
1548 
1549  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1550  gtid, target_gtid));
1551  KMP_DEBUG_ASSERT(gtid != target_gtid);
1552 
1553  __kmp_suspend_initialize_thread(th);
1554 
1555  __kmp_lock_suspend_mx(th);
1556 
1557  if (!flag) { // coming from __kmp_null_resume_wrapper
1558  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1559  }
1560 
1561  // First, check if the flag is null or its type has changed. If so, someone
1562  // else woke it up.
1563  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1564  // simply shows what flag was cast to
1565  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1566  "awake: flag(%p)\n",
1567  gtid, target_gtid, NULL));
1568  __kmp_unlock_suspend_mx(th);
1569  return;
1570  } else { // if multiple threads are sleeping, flag should be internally
1571  // referring to a specific thread here
1572  typename C::flag_t old_spin = flag->unset_sleeping();
1573  if (!flag->is_sleeping_val(old_spin)) {
1574  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1575  "awake: flag(%p): "
1576  "%u => %u\n",
1577  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1578  __kmp_unlock_suspend_mx(th);
1579  return;
1580  }
1581  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1582  "sleep bit for flag's loc(%p): "
1583  "%u => %u\n",
1584  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1585  }
1586  TCW_PTR(th->th.th_sleep_loc, NULL);
1587 
1588 #ifdef DEBUG_SUSPEND
1589  {
1590  char buffer[128];
1591  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1592  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1593  target_gtid, buffer);
1594  }
1595 #endif
1596  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1597  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1598  __kmp_unlock_suspend_mx(th);
1599  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1600  " for T#%d\n",
1601  gtid, target_gtid));
1602 }
1603 
1604 template <bool C, bool S>
1605 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1606  __kmp_resume_template(target_gtid, flag);
1607 }
1608 template <bool C, bool S>
1609 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1610  __kmp_resume_template(target_gtid, flag);
1611 }
1612 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1613  __kmp_resume_template(target_gtid, flag);
1614 }
1615 
1616 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1617 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1618 
1619 #if KMP_USE_MONITOR
1620 void __kmp_resume_monitor() {
1621  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1622  int status;
1623 #ifdef KMP_DEBUG
1624  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1625  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1626  KMP_GTID_MONITOR));
1627  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1628 #endif
1629  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1630  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1631 #ifdef DEBUG_SUSPEND
1632  {
1633  char buffer[128];
1634  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1635  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1636  KMP_GTID_MONITOR, buffer);
1637  }
1638 #endif
1639  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1640  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1641  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1642  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1643  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1644  " for T#%d\n",
1645  gtid, KMP_GTID_MONITOR));
1646 }
1647 #endif // KMP_USE_MONITOR
1648 
1649 void __kmp_yield() { sched_yield(); }
1650 
1651 void __kmp_gtid_set_specific(int gtid) {
1652  if (__kmp_init_gtid) {
1653  int status;
1654  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1655  (void *)(intptr_t)(gtid + 1));
1656  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1657  } else {
1658  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1659  }
1660 }
1661 
1662 int __kmp_gtid_get_specific() {
1663  int gtid;
1664  if (!__kmp_init_gtid) {
1665  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1666  "KMP_GTID_SHUTDOWN\n"));
1667  return KMP_GTID_SHUTDOWN;
1668  }
1669  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1670  if (gtid == 0) {
1671  gtid = KMP_GTID_DNE;
1672  } else {
1673  gtid--;
1674  }
1675  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1676  __kmp_gtid_threadprivate_key, gtid));
1677  return gtid;
1678 }
1679 
1680 double __kmp_read_cpu_time(void) {
1681  /*clock_t t;*/
1682  struct tms buffer;
1683 
1684  /*t =*/times(&buffer);
1685 
1686  return (double)(buffer.tms_utime + buffer.tms_cutime) /
1687  (double)CLOCKS_PER_SEC;
1688 }
1689 
1690 int __kmp_read_system_info(struct kmp_sys_info *info) {
1691  int status;
1692  struct rusage r_usage;
1693 
1694  memset(info, 0, sizeof(*info));
1695 
1696  status = getrusage(RUSAGE_SELF, &r_usage);
1697  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1698 
1699  // The maximum resident set size utilized (in kilobytes)
1700  info->maxrss = r_usage.ru_maxrss;
1701  // The number of page faults serviced without any I/O
1702  info->minflt = r_usage.ru_minflt;
1703  // The number of page faults serviced that required I/O
1704  info->majflt = r_usage.ru_majflt;
1705  // The number of times a process was "swapped" out of memory
1706  info->nswap = r_usage.ru_nswap;
1707  // The number of times the file system had to perform input
1708  info->inblock = r_usage.ru_inblock;
1709  // The number of times the file system had to perform output
1710  info->oublock = r_usage.ru_oublock;
1711  // The number of times a context switch was voluntarily
1712  info->nvcsw = r_usage.ru_nvcsw;
1713  // The number of times a context switch was forced
1714  info->nivcsw = r_usage.ru_nivcsw;
1715 
1716  return (status != 0);
1717 }
1718 
1719 void __kmp_read_system_time(double *delta) {
1720  double t_ns;
1721  struct timeval tval;
1722  struct timespec stop;
1723  int status;
1724 
1725  status = gettimeofday(&tval, NULL);
1726  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1727  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1728  t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1729  *delta = (t_ns * 1e-9);
1730 }
1731 
1732 void __kmp_clear_system_time(void) {
1733  struct timeval tval;
1734  int status;
1735  status = gettimeofday(&tval, NULL);
1736  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1737  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1738 }
1739 
1740 static int __kmp_get_xproc(void) {
1741 
1742  int r = 0;
1743 
1744 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1745  KMP_OS_OPENBSD || KMP_OS_HURD
1746 
1747  __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1748 
1749 #elif KMP_OS_DARWIN
1750 
1751  // Bug C77011 High "OpenMP Threads and number of active cores".
1752 
1753  // Find the number of available CPUs.
1754  kern_return_t rc;
1755  host_basic_info_data_t info;
1756  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1757  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1758  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1759  // Cannot use KA_TRACE() here because this code works before trace support
1760  // is initialized.
1761  r = info.avail_cpus;
1762  } else {
1763  KMP_WARNING(CantGetNumAvailCPU);
1764  KMP_INFORM(AssumedNumCPU);
1765  }
1766 
1767 #else
1768 
1769 #error "Unknown or unsupported OS."
1770 
1771 #endif
1772 
1773  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1774 
1775 } // __kmp_get_xproc
1776 
1777 int __kmp_read_from_file(char const *path, char const *format, ...) {
1778  int result;
1779  va_list args;
1780 
1781  va_start(args, format);
1782  FILE *f = fopen(path, "rb");
1783  if (f == NULL)
1784  return 0;
1785  result = vfscanf(f, format, args);
1786  fclose(f);
1787 
1788  return result;
1789 }
1790 
1791 void __kmp_runtime_initialize(void) {
1792  int status;
1793  pthread_mutexattr_t mutex_attr;
1794  pthread_condattr_t cond_attr;
1795 
1796  if (__kmp_init_runtime) {
1797  return;
1798  }
1799 
1800 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1801  if (!__kmp_cpuinfo.initialized) {
1802  __kmp_query_cpuid(&__kmp_cpuinfo);
1803  }
1804 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1805 
1806  __kmp_xproc = __kmp_get_xproc();
1807 
1808 #if !KMP_32_BIT_ARCH
1809  struct rlimit rlim;
1810  // read stack size of calling thread, save it as default for worker threads;
1811  // this should be done before reading environment variables
1812  status = getrlimit(RLIMIT_STACK, &rlim);
1813  if (status == 0) { // success?
1814  __kmp_stksize = rlim.rlim_cur;
1815  __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1816  }
1817 #endif /* KMP_32_BIT_ARCH */
1818 
1819  if (sysconf(_SC_THREADS)) {
1820 
1821  /* Query the maximum number of threads */
1822  __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1823  if (__kmp_sys_max_nth == -1) {
1824  /* Unlimited threads for NPTL */
1825  __kmp_sys_max_nth = INT_MAX;
1826  } else if (__kmp_sys_max_nth <= 1) {
1827  /* Can't tell, just use PTHREAD_THREADS_MAX */
1828  __kmp_sys_max_nth = KMP_MAX_NTH;
1829  }
1830 
1831  /* Query the minimum stack size */
1832  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1833  if (__kmp_sys_min_stksize <= 1) {
1834  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1835  }
1836  }
1837 
1838  /* Set up minimum number of threads to switch to TLS gtid */
1839  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1840 
1841  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1842  __kmp_internal_end_dest);
1843  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1844  status = pthread_mutexattr_init(&mutex_attr);
1845  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1846  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1847  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1848  status = pthread_mutexattr_destroy(&mutex_attr);
1849  KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1850  status = pthread_condattr_init(&cond_attr);
1851  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1852  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1853  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1854  status = pthread_condattr_destroy(&cond_attr);
1855  KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1856 #if USE_ITT_BUILD
1857  __kmp_itt_initialize();
1858 #endif /* USE_ITT_BUILD */
1859 
1860  __kmp_init_runtime = TRUE;
1861 }
1862 
1863 void __kmp_runtime_destroy(void) {
1864  int status;
1865 
1866  if (!__kmp_init_runtime) {
1867  return; // Nothing to do.
1868  }
1869 
1870 #if USE_ITT_BUILD
1871  __kmp_itt_destroy();
1872 #endif /* USE_ITT_BUILD */
1873 
1874  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1875  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1876 
1877  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1878  if (status != 0 && status != EBUSY) {
1879  KMP_SYSFAIL("pthread_mutex_destroy", status);
1880  }
1881  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1882  if (status != 0 && status != EBUSY) {
1883  KMP_SYSFAIL("pthread_cond_destroy", status);
1884  }
1885 #if KMP_AFFINITY_SUPPORTED
1886  __kmp_affinity_uninitialize();
1887 #endif
1888 
1889  __kmp_init_runtime = FALSE;
1890 }
1891 
1892 /* Put the thread to sleep for a time period */
1893 /* NOTE: not currently used anywhere */
1894 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1895 
1896 /* Calculate the elapsed wall clock time for the user */
1897 void __kmp_elapsed(double *t) {
1898  int status;
1899 #ifdef FIX_SGI_CLOCK
1900  struct timespec ts;
1901 
1902  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1903  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1904  *t =
1905  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1906 #else
1907  struct timeval tv;
1908 
1909  status = gettimeofday(&tv, NULL);
1910  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1911  *t =
1912  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1913 #endif
1914 }
1915 
1916 /* Calculate the elapsed wall clock tick for the user */
1917 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1918 
1919 /* Return the current time stamp in nsec */
1920 kmp_uint64 __kmp_now_nsec() {
1921  struct timeval t;
1922  gettimeofday(&t, NULL);
1923  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1924  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1925  return nsec;
1926 }
1927 
1928 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1929 /* Measure clock ticks per millisecond */
1930 void __kmp_initialize_system_tick() {
1931  kmp_uint64 now, nsec2, diff;
1932  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1933  kmp_uint64 nsec = __kmp_now_nsec();
1934  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1935  while ((now = __kmp_hardware_timestamp()) < goal)
1936  ;
1937  nsec2 = __kmp_now_nsec();
1938  diff = nsec2 - nsec;
1939  if (diff > 0) {
1940  kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
1941  if (tpms > 0)
1942  __kmp_ticks_per_msec = tpms;
1943  }
1944 }
1945 #endif
1946 
1947 /* Determine whether the given address is mapped into the current address
1948  space. */
1949 
1950 int __kmp_is_address_mapped(void *addr) {
1951 
1952  int found = 0;
1953  int rc;
1954 
1955 #if KMP_OS_LINUX || KMP_OS_HURD
1956 
1957  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
1958  address ranges mapped into the address space. */
1959 
1960  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1961  FILE *file = NULL;
1962 
1963  file = fopen(name, "r");
1964  KMP_ASSERT(file != NULL);
1965 
1966  for (;;) {
1967 
1968  void *beginning = NULL;
1969  void *ending = NULL;
1970  char perms[5];
1971 
1972  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1973  if (rc == EOF) {
1974  break;
1975  }
1976  KMP_ASSERT(rc == 3 &&
1977  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1978 
1979  // Ending address is not included in the region, but beginning is.
1980  if ((addr >= beginning) && (addr < ending)) {
1981  perms[2] = 0; // 3th and 4th character does not matter.
1982  if (strcmp(perms, "rw") == 0) {
1983  // Memory we are looking for should be readable and writable.
1984  found = 1;
1985  }
1986  break;
1987  }
1988  }
1989 
1990  // Free resources.
1991  fclose(file);
1992  KMP_INTERNAL_FREE(name);
1993 #elif KMP_OS_FREEBSD
1994  char *buf;
1995  size_t lstsz;
1996  int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
1997  rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
1998  if (rc < 0)
1999  return 0;
2000  // We pass from number of vm entry's semantic
2001  // to size of whole entry map list.
2002  lstsz = lstsz * 4 / 3;
2003  buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2004  rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2005  if (rc < 0) {
2006  kmpc_free(buf);
2007  return 0;
2008  }
2009 
2010  char *lw = buf;
2011  char *up = buf + lstsz;
2012 
2013  while (lw < up) {
2014  struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2015  size_t cursz = cur->kve_structsize;
2016  if (cursz == 0)
2017  break;
2018  void *start = reinterpret_cast<void *>(cur->kve_start);
2019  void *end = reinterpret_cast<void *>(cur->kve_end);
2020  // Readable/Writable addresses within current map entry
2021  if ((addr >= start) && (addr < end)) {
2022  if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2023  (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2024  found = 1;
2025  break;
2026  }
2027  }
2028  lw += cursz;
2029  }
2030  kmpc_free(buf);
2031 
2032 #elif KMP_OS_DARWIN
2033 
2034  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2035  using vm interface. */
2036 
2037  int buffer;
2038  vm_size_t count;
2039  rc = vm_read_overwrite(
2040  mach_task_self(), // Task to read memory of.
2041  (vm_address_t)(addr), // Address to read from.
2042  1, // Number of bytes to be read.
2043  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2044  &count // Address of var to save number of read bytes in.
2045  );
2046  if (rc == 0) {
2047  // Memory successfully read.
2048  found = 1;
2049  }
2050 
2051 #elif KMP_OS_NETBSD
2052 
2053  int mib[5];
2054  mib[0] = CTL_VM;
2055  mib[1] = VM_PROC;
2056  mib[2] = VM_PROC_MAP;
2057  mib[3] = getpid();
2058  mib[4] = sizeof(struct kinfo_vmentry);
2059 
2060  size_t size;
2061  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2062  KMP_ASSERT(!rc);
2063  KMP_ASSERT(size);
2064 
2065  size = size * 4 / 3;
2066  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2067  KMP_ASSERT(kiv);
2068 
2069  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2070  KMP_ASSERT(!rc);
2071  KMP_ASSERT(size);
2072 
2073  for (size_t i = 0; i < size; i++) {
2074  if (kiv[i].kve_start >= (uint64_t)addr &&
2075  kiv[i].kve_end <= (uint64_t)addr) {
2076  found = 1;
2077  break;
2078  }
2079  }
2080  KMP_INTERNAL_FREE(kiv);
2081 #elif KMP_OS_OPENBSD
2082 
2083  int mib[3];
2084  mib[0] = CTL_KERN;
2085  mib[1] = KERN_PROC_VMMAP;
2086  mib[2] = getpid();
2087 
2088  size_t size;
2089  uint64_t end;
2090  rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2091  KMP_ASSERT(!rc);
2092  KMP_ASSERT(size);
2093  end = size;
2094 
2095  struct kinfo_vmentry kiv = {.kve_start = 0};
2096 
2097  while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2098  KMP_ASSERT(size);
2099  if (kiv.kve_end == end)
2100  break;
2101 
2102  if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2103  found = 1;
2104  break;
2105  }
2106  kiv.kve_start += 1;
2107  }
2108 #elif KMP_OS_DRAGONFLY
2109 
2110  // FIXME(DragonFly): Implement this
2111  found = 1;
2112 
2113 #else
2114 
2115 #error "Unknown or unsupported OS"
2116 
2117 #endif
2118 
2119  return found;
2120 
2121 } // __kmp_is_address_mapped
2122 
2123 #ifdef USE_LOAD_BALANCE
2124 
2125 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2126 
2127 // The function returns the rounded value of the system load average
2128 // during given time interval which depends on the value of
2129 // __kmp_load_balance_interval variable (default is 60 sec, other values
2130 // may be 300 sec or 900 sec).
2131 // It returns -1 in case of error.
2132 int __kmp_get_load_balance(int max) {
2133  double averages[3];
2134  int ret_avg = 0;
2135 
2136  int res = getloadavg(averages, 3);
2137 
2138  // Check __kmp_load_balance_interval to determine which of averages to use.
2139  // getloadavg() may return the number of samples less than requested that is
2140  // less than 3.
2141  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2142  ret_avg = (int)averages[0]; // 1 min
2143  } else if ((__kmp_load_balance_interval >= 180 &&
2144  __kmp_load_balance_interval < 600) &&
2145  (res >= 2)) {
2146  ret_avg = (int)averages[1]; // 5 min
2147  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2148  ret_avg = (int)averages[2]; // 15 min
2149  } else { // Error occurred
2150  return -1;
2151  }
2152 
2153  return ret_avg;
2154 }
2155 
2156 #else // Linux* OS
2157 
2158 // The function returns number of running (not sleeping) threads, or -1 in case
2159 // of error. Error could be reported if Linux* OS kernel too old (without
2160 // "/proc" support). Counting running threads stops if max running threads
2161 // encountered.
2162 int __kmp_get_load_balance(int max) {
2163  static int permanent_error = 0;
2164  static int glb_running_threads = 0; // Saved count of the running threads for
2165  // the thread balance algorithm
2166  static double glb_call_time = 0; /* Thread balance algorithm call time */
2167 
2168  int running_threads = 0; // Number of running threads in the system.
2169 
2170  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2171  struct dirent *proc_entry = NULL;
2172 
2173  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2174  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2175  struct dirent *task_entry = NULL;
2176  int task_path_fixed_len;
2177 
2178  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2179  int stat_file = -1;
2180  int stat_path_fixed_len;
2181 
2182  int total_processes = 0; // Total number of processes in system.
2183  int total_threads = 0; // Total number of threads in system.
2184 
2185  double call_time = 0.0;
2186 
2187  __kmp_str_buf_init(&task_path);
2188  __kmp_str_buf_init(&stat_path);
2189 
2190  __kmp_elapsed(&call_time);
2191 
2192  if (glb_call_time &&
2193  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2194  running_threads = glb_running_threads;
2195  goto finish;
2196  }
2197 
2198  glb_call_time = call_time;
2199 
2200  // Do not spend time on scanning "/proc/" if we have a permanent error.
2201  if (permanent_error) {
2202  running_threads = -1;
2203  goto finish;
2204  }
2205 
2206  if (max <= 0) {
2207  max = INT_MAX;
2208  }
2209 
2210  // Open "/proc/" directory.
2211  proc_dir = opendir("/proc");
2212  if (proc_dir == NULL) {
2213  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2214  // error now and in subsequent calls.
2215  running_threads = -1;
2216  permanent_error = 1;
2217  goto finish;
2218  }
2219 
2220  // Initialize fixed part of task_path. This part will not change.
2221  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2222  task_path_fixed_len = task_path.used; // Remember number of used characters.
2223 
2224  proc_entry = readdir(proc_dir);
2225  while (proc_entry != NULL) {
2226  // Proc entry is a directory and name starts with a digit. Assume it is a
2227  // process' directory.
2228  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2229 
2230  ++total_processes;
2231  // Make sure init process is the very first in "/proc", so we can replace
2232  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2233  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2234  // true (where "=>" is implication). Since C++ does not have => operator,
2235  // let us replace it with its equivalent: a => b == ! a || b.
2236  KMP_DEBUG_ASSERT(total_processes != 1 ||
2237  strcmp(proc_entry->d_name, "1") == 0);
2238 
2239  // Construct task_path.
2240  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2241  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2242  KMP_STRLEN(proc_entry->d_name));
2243  __kmp_str_buf_cat(&task_path, "/task", 5);
2244 
2245  task_dir = opendir(task_path.str);
2246  if (task_dir == NULL) {
2247  // Process can finish between reading "/proc/" directory entry and
2248  // opening process' "task/" directory. So, in general case we should not
2249  // complain, but have to skip this process and read the next one. But on
2250  // systems with no "task/" support we will spend lot of time to scan
2251  // "/proc/" tree again and again without any benefit. "init" process
2252  // (its pid is 1) should exist always, so, if we cannot open
2253  // "/proc/1/task/" directory, it means "task/" is not supported by
2254  // kernel. Report an error now and in the future.
2255  if (strcmp(proc_entry->d_name, "1") == 0) {
2256  running_threads = -1;
2257  permanent_error = 1;
2258  goto finish;
2259  }
2260  } else {
2261  // Construct fixed part of stat file path.
2262  __kmp_str_buf_clear(&stat_path);
2263  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2264  __kmp_str_buf_cat(&stat_path, "/", 1);
2265  stat_path_fixed_len = stat_path.used;
2266 
2267  task_entry = readdir(task_dir);
2268  while (task_entry != NULL) {
2269  // It is a directory and name starts with a digit.
2270  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2271  ++total_threads;
2272 
2273  // Construct complete stat file path. Easiest way would be:
2274  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2275  // task_entry->d_name );
2276  // but seriae of __kmp_str_buf_cat works a bit faster.
2277  stat_path.used =
2278  stat_path_fixed_len; // Reset stat path to its fixed part.
2279  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2280  KMP_STRLEN(task_entry->d_name));
2281  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2282 
2283  // Note: Low-level API (open/read/close) is used. High-level API
2284  // (fopen/fclose) works ~ 30 % slower.
2285  stat_file = open(stat_path.str, O_RDONLY);
2286  if (stat_file == -1) {
2287  // We cannot report an error because task (thread) can terminate
2288  // just before reading this file.
2289  } else {
2290  /* Content of "stat" file looks like:
2291  24285 (program) S ...
2292 
2293  It is a single line (if program name does not include funny
2294  symbols). First number is a thread id, then name of executable
2295  file name in paretheses, then state of the thread. We need just
2296  thread state.
2297 
2298  Good news: Length of program name is 15 characters max. Longer
2299  names are truncated.
2300 
2301  Thus, we need rather short buffer: 15 chars for program name +
2302  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2303 
2304  Bad news: Program name may contain special symbols like space,
2305  closing parenthesis, or even new line. This makes parsing
2306  "stat" file not 100 % reliable. In case of fanny program names
2307  parsing may fail (report incorrect thread state).
2308 
2309  Parsing "status" file looks more promissing (due to different
2310  file structure and escaping special symbols) but reading and
2311  parsing of "status" file works slower.
2312  -- ln
2313  */
2314  char buffer[65];
2315  ssize_t len;
2316  len = read(stat_file, buffer, sizeof(buffer) - 1);
2317  if (len >= 0) {
2318  buffer[len] = 0;
2319  // Using scanf:
2320  // sscanf( buffer, "%*d (%*s) %c ", & state );
2321  // looks very nice, but searching for a closing parenthesis
2322  // works a bit faster.
2323  char *close_parent = strstr(buffer, ") ");
2324  if (close_parent != NULL) {
2325  char state = *(close_parent + 2);
2326  if (state == 'R') {
2327  ++running_threads;
2328  if (running_threads >= max) {
2329  goto finish;
2330  }
2331  }
2332  }
2333  }
2334  close(stat_file);
2335  stat_file = -1;
2336  }
2337  }
2338  task_entry = readdir(task_dir);
2339  }
2340  closedir(task_dir);
2341  task_dir = NULL;
2342  }
2343  }
2344  proc_entry = readdir(proc_dir);
2345  }
2346 
2347  // There _might_ be a timing hole where the thread executing this
2348  // code get skipped in the load balance, and running_threads is 0.
2349  // Assert in the debug builds only!!!
2350  KMP_DEBUG_ASSERT(running_threads > 0);
2351  if (running_threads <= 0) {
2352  running_threads = 1;
2353  }
2354 
2355 finish: // Clean up and exit.
2356  if (proc_dir != NULL) {
2357  closedir(proc_dir);
2358  }
2359  __kmp_str_buf_free(&task_path);
2360  if (task_dir != NULL) {
2361  closedir(task_dir);
2362  }
2363  __kmp_str_buf_free(&stat_path);
2364  if (stat_file != -1) {
2365  close(stat_file);
2366  }
2367 
2368  glb_running_threads = running_threads;
2369 
2370  return running_threads;
2371 
2372 } // __kmp_get_load_balance
2373 
2374 #endif // KMP_OS_DARWIN
2375 
2376 #endif // USE_LOAD_BALANCE
2377 
2378 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2379  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2380  KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2381 
2382 // we really only need the case with 1 argument, because CLANG always build
2383 // a struct of pointers to shared variables referenced in the outlined function
2384 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2385  void *p_argv[]
2386 #if OMPT_SUPPORT
2387  ,
2388  void **exit_frame_ptr
2389 #endif
2390 ) {
2391 #if OMPT_SUPPORT
2392  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2393 #endif
2394 
2395  switch (argc) {
2396  default:
2397  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2398  fflush(stderr);
2399  exit(-1);
2400  case 0:
2401  (*pkfn)(&gtid, &tid);
2402  break;
2403  case 1:
2404  (*pkfn)(&gtid, &tid, p_argv[0]);
2405  break;
2406  case 2:
2407  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2408  break;
2409  case 3:
2410  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2411  break;
2412  case 4:
2413  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2414  break;
2415  case 5:
2416  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2417  break;
2418  case 6:
2419  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2420  p_argv[5]);
2421  break;
2422  case 7:
2423  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2424  p_argv[5], p_argv[6]);
2425  break;
2426  case 8:
2427  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2428  p_argv[5], p_argv[6], p_argv[7]);
2429  break;
2430  case 9:
2431  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2432  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2433  break;
2434  case 10:
2435  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2436  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2437  break;
2438  case 11:
2439  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2440  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2441  break;
2442  case 12:
2443  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2444  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2445  p_argv[11]);
2446  break;
2447  case 13:
2448  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2449  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2450  p_argv[11], p_argv[12]);
2451  break;
2452  case 14:
2453  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2454  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2455  p_argv[11], p_argv[12], p_argv[13]);
2456  break;
2457  case 15:
2458  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2459  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2460  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2461  break;
2462  }
2463 
2464  return 1;
2465 }
2466 
2467 #endif
2468 
2469 #if KMP_OS_LINUX
2470 // Functions for hidden helper task
2471 namespace {
2472 // Condition variable for initializing hidden helper team
2473 pthread_cond_t hidden_helper_threads_initz_cond_var;
2474 pthread_mutex_t hidden_helper_threads_initz_lock;
2475 volatile int hidden_helper_initz_signaled = FALSE;
2476 
2477 // Condition variable for deinitializing hidden helper team
2478 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2479 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2480 volatile int hidden_helper_deinitz_signaled = FALSE;
2481 
2482 // Condition variable for the wrapper function of main thread
2483 pthread_cond_t hidden_helper_main_thread_cond_var;
2484 pthread_mutex_t hidden_helper_main_thread_lock;
2485 volatile int hidden_helper_main_thread_signaled = FALSE;
2486 
2487 // Semaphore for worker threads. We don't use condition variable here in case
2488 // that when multiple signals are sent at the same time, only one thread might
2489 // be waken.
2490 sem_t hidden_helper_task_sem;
2491 } // namespace
2492 
2493 void __kmp_hidden_helper_worker_thread_wait() {
2494  int status = sem_wait(&hidden_helper_task_sem);
2495  KMP_CHECK_SYSFAIL("sem_wait", status);
2496 }
2497 
2498 void __kmp_do_initialize_hidden_helper_threads() {
2499  // Initialize condition variable
2500  int status =
2501  pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2502  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2503 
2504  status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2505  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2506 
2507  status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2508  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2509 
2510  status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2511  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2512 
2513  status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2514  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2515 
2516  status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2517  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2518 
2519  // Initialize the semaphore
2520  status = sem_init(&hidden_helper_task_sem, 0, 0);
2521  KMP_CHECK_SYSFAIL("sem_init", status);
2522 
2523  // Create a new thread to finish initialization
2524  pthread_t handle;
2525  status = pthread_create(
2526  &handle, nullptr,
2527  [](void *) -> void * {
2528  __kmp_hidden_helper_threads_initz_routine();
2529  return nullptr;
2530  },
2531  nullptr);
2532  KMP_CHECK_SYSFAIL("pthread_create", status);
2533 }
2534 
2535 void __kmp_hidden_helper_threads_initz_wait() {
2536  // Initial thread waits here for the completion of the initialization. The
2537  // condition variable will be notified by main thread of hidden helper teams.
2538  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2539  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2540 
2541  if (!TCR_4(hidden_helper_initz_signaled)) {
2542  status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2543  &hidden_helper_threads_initz_lock);
2544  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2545  }
2546 
2547  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2548  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2549 }
2550 
2551 void __kmp_hidden_helper_initz_release() {
2552  // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2553  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2554  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2555 
2556  status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2557  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2558 
2559  TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2560 
2561  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2562  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2563 }
2564 
2565 void __kmp_hidden_helper_main_thread_wait() {
2566  // The main thread of hidden helper team will be blocked here. The
2567  // condition variable can only be signal in the destructor of RTL.
2568  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2569  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2570 
2571  if (!TCR_4(hidden_helper_main_thread_signaled)) {
2572  status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2573  &hidden_helper_main_thread_lock);
2574  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2575  }
2576 
2577  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2578  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2579 }
2580 
2581 void __kmp_hidden_helper_main_thread_release() {
2582  // The initial thread of OpenMP RTL should call this function to wake up the
2583  // main thread of hidden helper team.
2584  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2585  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2586 
2587  status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2588  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2589 
2590  // The hidden helper team is done here
2591  TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2592 
2593  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2594  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2595 }
2596 
2597 void __kmp_hidden_helper_worker_thread_signal() {
2598  int status = sem_post(&hidden_helper_task_sem);
2599  KMP_CHECK_SYSFAIL("sem_post", status);
2600 }
2601 
2602 void __kmp_hidden_helper_threads_deinitz_wait() {
2603  // Initial thread waits here for the completion of the deinitialization. The
2604  // condition variable will be notified by main thread of hidden helper teams.
2605  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2606  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2607 
2608  if (!TCR_4(hidden_helper_deinitz_signaled)) {
2609  status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2610  &hidden_helper_threads_deinitz_lock);
2611  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2612  }
2613 
2614  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2615  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2616 }
2617 
2618 void __kmp_hidden_helper_threads_deinitz_release() {
2619  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2620  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2621 
2622  status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2623  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2624 
2625  TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2626 
2627  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2628  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2629 }
2630 #else // KMP_OS_LINUX
2631 void __kmp_hidden_helper_worker_thread_wait() {
2632  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2633 }
2634 
2635 void __kmp_do_initialize_hidden_helper_threads() {
2636  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2637 }
2638 
2639 void __kmp_hidden_helper_threads_initz_wait() {
2640  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2641 }
2642 
2643 void __kmp_hidden_helper_initz_release() {
2644  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2645 }
2646 
2647 void __kmp_hidden_helper_main_thread_wait() {
2648  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2649 }
2650 
2651 void __kmp_hidden_helper_main_thread_release() {
2652  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2653 }
2654 
2655 void __kmp_hidden_helper_worker_thread_signal() {
2656  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2657 }
2658 
2659 void __kmp_hidden_helper_threads_deinitz_wait() {
2660  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2661 }
2662 
2663 void __kmp_hidden_helper_threads_deinitz_release() {
2664  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2665 }
2666 #endif // KMP_OS_LINUX
2667 
2668 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the partitioned timers to begin with name.
Definition: kmp_stats.h:933